
Binghamton

University

CS-220

Spring 2016

Instruction Set
Architectures

Computer Systems: Section 4.1

Binghamton

University

CS-220

Spring 2016

Suppose you built a computer…

What Building Blocks would you use?

Binghamton

University

CS-220

Spring 2016

Arithmetic Logic Unit (ALU)

ALU

OP1 OP2

RES

OPERATION

Binghamton

University

CS-220

Spring 2016

ALU + Registers

ALUOPERATION

R0: 0x0000 00F0

R1: 0x0000 00F1

R2: 0xFFFF FFFF

R3:

Binghamton

University

CS-220

Spring 2016

ALU + Registers + Memory

ALUOP

R0: 0x0000 00F0

R1: 0x0000 00F1

R2: 0xFFFF FFFF

R3:

0x0000 00F0

0x0000 00F1

0xFFFF FFFF

Binghamton

University

CS-220

Spring 2016

Computer vs. Adding Machine

What is the difference?

Binghamton

University

CS-220

Spring 2016

ALU+Registers+Memory+Instructions

ALU

R0: 0x0000 00F0

R1: 0x0000 00F1

R2: 0xFFFF FFFF

R3:

0x0000 00F0

0x0000 00F1

0xFFFF FFFF

CONTROL UNIT

Binghamton

University

CS-220

Spring 2016

How do you describe your
machine to a software guy?

Binghamton

University

CS-220

Spring 2016

“Instruction Set Architecture” (ISA)

I S A

Binghamton

University

CS-220

Spring 2016

ISA Contents
• The instructions the hardware recognizes

• add, move, get, …

• The data types the instructions can work
on

• two’s complement binary, ascii character,
unsigned binary, etc.

• The data the instructions can work on
• Registers
• Memory

• The external interfaces supported by the
instructions

• File I/O
• Exception Handling and Interrupts

ISA

Software

https://en.wikipedia.org/wiki/Instruction_set

Binghamton

University

CS-220

Spring 2016

ISA Compatability

• It’s nice to have the same software run on different hardware

• It’s nice to have the apps I wrote for iPhone5 run on iPhone6

• But different hardware has different capabilities

• I can do more things on an iPhone6 than an iPhone5

• How can we manage this change?

Binghamton

University

CS-220

Spring 2016

Downward Compatability

• If something is downward compatible
• It will do everything it used to do

• It may be able to do more

• Implications …
• Things can only get more complex

• Every “mistake” made early propagates forever

• Eventually, things get really complicated

iPhone 5 iPhone 5
iPhone 6

Binghamton

University

CS-220

Spring 2016

Example Downward Compatability

• 1972 – Intel 8008 – 8 bit word – terminals & calculators
• Registers: 16 bits with a “low” byte and a “high” byte al,ah; bl, bh; …

• 1978 – Intel 8086 – 16 bit word – Vanilla PC
• Registers: 16 bits: ax (al,ah); bx (bl,bh) …

• 1985 – Intel 80386 – 32 bit word - PC/XT - Windows
• Registers: 32 bits: eax [ax (al,ah)]; ebx [bx (bl, bh)]; …

• ~2000 – AMD AMD64 – 64 bit word
• Registers: 64 bits: rax { eax [ax (al,ah)]}; rbx {ebx [bx (bl,bh)] }; …

Binghamton

University

CS-220

Spring 2016

Intel Microprocessor Milestones

Date Chip Data Width Transistors Clock Rate Usage

1972 8008 8 3.5K 0.8 MHz Monitors, Controllers

1974 8080 8 (some 16) 6K 2 MHz + Calculators

1978 8086 16 29K 10 MHz IBM PC/DOS – First x86

1985 80386 32 275K 40 MHz Windows+Linux

1993 Pentium P5 32 3.1M 66 MHz ditto

2004 Pentium 4F 64 125M 3.8 GHz ditto

2008 Core i7 64 731M 3.33 GHz ditto

2014 Core i7 extreme 64 1.4B 3.5 GHz ditto

Binghamton

University

CS-220

Spring 2016

37 Years of Intel x86 Evolution

X86-64 / EM64t

X86-32/IA32

X86-16 8086

286

386
486
Pentium
Pentium MMX

Pentium III

Pentium 4

Pentium 4E

Pentium 4F

Core 2 Duo
Core i7

t

i

m

e

Architectures Processors

MMX

SSE

SSE2

SSE3

SSE4

1978

1985

1993

2004

2008

Binghamton

University

CS-220

Spring 2016

CPU

Assembly Programmer’s View of x86

• Memory
• Byte addressable array

• Code, user data, (some) OS data

• Includes stack used to support procedures

• Programmer-Visible State
• IP: Instruction Pointer

• Address of next instruction

• Called “EIP” (IA32) or “RIP” (x86-64)

• Register file

• Heavily used program data

• Condition codes

• Store status information about most recent arithmetic operation

• Used for conditional branching

• Arithmetic/Logic Unit (ALU)

• Performs Instructions

IP
Registers

Memory

Object Code
Program Data
OS Data

Addresses

Data

Instructions

“Stack”

Condition
CodesALU

Binghamton

University

CS-220

Spring 2016

X86 Integer Registers

• 8+ 64 bit Registers

• Fast Read/Write (CPU Speed)

• No explicit data type!

• Values undefined (X) until set

• Register Names based on Historic Usage
• Naming conventions used to access portions of registers

Binghamton

University

CS-220

Spring 2016

Origin

Accumulate

Counter

Data

Base

Source Index

Destination Index

Stack Pointer

base Pointer

x86 Integer Registers

%rdi

%rax

%rcx

%rdx

%rsi

%rbx

%rbp

%rsp

%eax

%ecx

%edx

%ebx

%esi

%edi

%esp

%ebp

%ax

%cx

%dx

%bx

%si

%di

%sp

%bp

%ah %al

%ch %cl

%dh %dl

%bh %bl

8
16

32
64

Binghamton

University

CS-220

Spring 2016

What is “Memory”

• In x86, memory is a list of bytes

• Each byte of memory has a specific ADDRESS… the
index of the byte from the beginning of memory

• For this class, we will use 32 bit addresses

• Memory read/write takes about 10x longer than
register read/write!

• Memory read/write is about 10x faster than
read/write from disk (external IO)

Address Value

0xFFFF FFFF

0xFFFF FFFE 0xDA

0xFFFF FFFD 0xED

0xFFFF FFFC 0xBE

0xFFFF FFFB 0xEF

…

0x0000 0C08 0x00

0x0000 0C07 0x01

0x0000 0C06 0x18

0x0000 0C05 0x00

….

0x0000 0003 0x00

0x0000 0002 0x00

0x0000 0001 0x00

0x0000 0000 0x03

Binghamton

University

CS-220

Spring 2016

X86 Instructions
• Smallest (Atomic) directive to x86 “hardware”

• Consist of Opcode and Operands

• Two Flavors
• Man-readable “Assembly”

• Machine Readable “Object Code” or “Machine Code” or “Binary”

• Translation…
ASSEMBLY CODE

push %ebp
mov%esp,%ebp
and $0xfffffff0,%esp
sub $0xa0,%esp
mov0x8(%ebp),%eax
mov%eax,0x8(%esp)

ASSEMBLER
OBJECT CODE

0x55
0x89e5
0x83e4f0
0x81eca0000000
0x8b4508
0x89442408 DISASSEMBLY

Binghamton

University

CS-220

Spring 2016

X86 Instruction Cycle
Fetch

Instruction
@ EIP

Decode
Instruction

Evaluate
Address

Fetch
Operands

Execute
Instruction

Store
Results

Always
increments

EIP

May
modify EIP

Binghamton

University

CS-220

Spring 2016

X86 Instruction Cycle
Fetch

Instruction
@ EIP

Decode
Instruction

Evaluate
Address

Fetch
Operands

Execute
Instruction

Store
Results

Read from
Memory

Read from
Memory /
Registers

Write to
Memory /
Registers

Control Unit

Process
through ALU

Process
through ALU

