CS-220

Spring 2016

Instruction Set
Architectures

Computer Systems: Section 4.1

Binghamton CS-220

University Spring 2016

Suppose you built a computer...

What Building Blocks would you use?

Binghamton CS-220

University Spring 2016

Arithmetic Logic Unit (ALU)

8 8
-3

Binghamton

CS-220

University

ALU + Registers

OPERATION

Spring 2016

R0O: 0x0000 00FO

R1: 0x0000 00F1

R2: OxFFFF FFFF

R3:

Binghamton

CS-220

University

ALU + Registers + Memory

Spring 2016

0x0000 O0FO

RO: 0x0000 00FO

0x0000 00F1

R1: 0x0000 00F1

OxFFFF FFFF

R2: OxFFFF FFFF

R3:

‘L
L

Binghamton CS-220

University Spring 2016

Computer vs. Adding Machine

What is the difference?

Binghamton

CS-220

University

ALU+Registers+Memory+Instructions

Spring 2016

0x0000 O0FO

RO: 0x0000 00FO

0x0000 00F1

R1: 0x0000 00F1

OxFFFF FFFF

R2: OxFFFF FFFF

R3:

‘L
L

CS-220

Spring 2016

How do you describe your
machine to a software guy?

Binghamton CS-220

University Spring 2016

“Instruction Set Architecture” (ISA

SUB32 FPROC ; procedure begins here
CMP AX, 97 ; compare AX to 97
JL DONE ; if less, jump to DONE
CMP AX,122 ; compare AX to 122
JG DONE ; Lf greater, jump to DONE
SUB AX,32 ; subtract 32 from AX
DONE: BRET ; return to main program
SUB3Z ENDP ; procedure ends here

Binghamton CS-220

University Spring 2016

|ISA Contents

* The instructions the hardware recognizes
* add, move, get, ...

* The data types the instructions can work
on

* two’s complement binary, ascii character,
unsigned binary, etc.
* The data the instructions can work on
* Registers
* Memory

* The external interfaces supported by the
instructions

* File /0
* Exception Handling and Interrupts

https://en.wikipedia.org/wiki/Instruction_set

Binghamton CS-220

University Spring 2016

ISA Compatability

* It's nice to have the same software run on different hardware
* [t's nice to have the apps I wrote for iPhone5 run on iPhone6
* But different hardware has different capabilities

* [can do more things on an iPhone6 than an iPhone5

* How can we manage this change?

Binghamton CS-220

University Spring 2016

Downward Compatability

* [f something is downward compatible
* It will do everything it used to do
* [t may be able to do more

iPhone 6

* Implications ...
* Things can only get more complex
* Every “mistake” made early propagates forever
* Eventually, things get really complicated

Binghamton CS-220

University Spring 2016

Example Downward Compatabllity

« 1972 - Intel 8008 - 8 bit word - terminals & calculators

* Registers: 16 bits with a “low” byte and a “high” byte al,ah; bl, bh; ...
« 1978 - Intel 8086 - 16 bit word - Vanilla PC

* Registers: 16 bits: ax (al,ah); bx (bl,bh) ...
* 1985 - Intel 80386 - 32 bit word - PC/XT - Windows

* Registers: 32 bits: eax [ax (al,ah)]; ebx [bx (bl, bh) |; ...

e ~2000 - AMD AMD64 - 64 bit word
* Registers: 64 bits: rax { eax [ax (al,ah)]}; rbx {ebx [bx (bl,bh)] }; ...

Binghamton CS-220

University Spring 2016

Intel I\/Iicroprocessor Milestones

1972 8008 3.5K 0.8 MHz Monitors, Controllers
1974 8080 8 (some 16) 6K 2 MHz + Calculators

1978 8086 16 29K 10 MHz IBM PC/DOS - First x86
1985 80386 32 275K 40 MHz Windows+Linux

1993 Pentium P5 32 3.1M 66 MHz ditto

2004 Pentium 4F 64 125M 3.8 GHz ditto

2008 Corei7 64 731M 3.33 GHz ditto

2014 Corei7 extreme 64 1.4B 3.5 GHz ditto

Binghamton CS-220

University Spring 2016
37 Years of Intel x86 Evolution
Architectures Processors
X86-16 8086 1978
286
X86-32/1A32 386 1985
486
Pentium
MMX Pentium MMX
SSE Pentium [l
SSE2 Pentium 4
SSE3 Pentium 4E 1993
X86-64 / EM64t Pentium 4F 2004
Core 2 Duo
SSE4 Core i7 2008

Binghamton CS-220

University Spring 2016

Assembly Programmer’s View of x86

CPU Memory

Addresses

A 4

“Stack”

* Programmer-Visible State -

e [P: Instruction Pointer

* Address of next instruction Instructions

 Called “EIP” (IA32) or “RIP” (x86-64) v .

* Register file SbJeCt CoDdet
* Heavily used program data rogram Data

* Condition codes OS Data
 Store status information about most recent arithmetic operation

Data

S
A 4

S

 Used for conditional branching
 Arithmetic/Logic Unit (ALU)

* Performs Instructions

* Memory
* Byte addressable array
* Code, user data, (some) OS data
* Includes stack used to support procedures

Binghamton CS-220

University Spring 2016

X86 Integer Registers

G
blololololololy lolololololols

* 84+ 64 bit Registers
* Fast Read/Write (CPU Speed)

* No explicit data type!

 Values undefined (X) until set

* Register Names based on Historic Usage
* Naming conventions used to access portions of registers

Binghamton CS-220

University Spring 2016
X860 Integer Registers
L o1 - 32 s -
‘4_ 16 — — Origin
%ah %al Accumulate

%ch %ocl Counter

%dh %Il Data

%bh JASMl| Base

Source Index

Destination Index

Stack Pointer

base Pointer

Binghamton CS-220

University Spring 2016

. 1 7) Address

What is "Memory mp—
OxFFFF FFFE 0xDA

* In x86, memory is a list of bytes OXFFFF FFFD [0

* Each byte of memory has a specific ADDRESS... the oxerre Frrc CR

index of the byte from the beginning of memory OXFEFFFEED OXEF

e For this class, we will use 32 bit addresses 0x0000 0C08 |[Ll)

* Memory read/write takes about 10x longer than 0x0000 0€07
register read /write! 0x0000 0CO6 EUSRS

0x0000 0CO5

* Memory read/write is about 10x faster than

read /write from disk (external 10) 050000 0003

0x0000 0002
0x0000 0001
0x0000 0000

Binghamton CS-220

University Spring 2016
X86 Instructions

* Smallest (Atomic) directive to x86 “hardware”

* Consist of Opcode and Operands

* Two Flavors
* Man-readable “Assembly”
* Machine Readable “Object Code” or “Machine Code” or “Binary”

 Translation...

ASSEMBLY CODE OBJECT CODE
push %ebp ASSEMBLER 0x55
mov%esp,%ebp 0x89e5
and $0xfffffff0,%esp 0x83e4f0
sub $0xa0,%esp 0x81eca0000000
mov0x8(%ebp),%eax - 0x8b4508
mov%eax,0x8(%esp) DISASSEMBLY 0x89442408

Binghamton CS-220

University Spring 2016

X86 Instruction Cycle o

Fetch Increments
Instruction EIP

@ EIP

May
modify EIP Store

Results

Decode

Instruction

Evaluate
Address

Execute
Instruction
\ Fetch /
Operands

Binghamton CS-220

University Spring 2016

X86 Instruction Cycle

Fetch Read from

Write to Instruction Memory

Memory / @ EIP
Registers

Store Decode
Results Instruction

Control Unit

Process
through ALU

Execute Evaluate
Instruction Address

Read from

Memory /

Fetch Registers
Operands

